Direct Observation of the Uptake of Outer Membrane Proteins by the Periplasmic Chaperone Skp

نویسندگان

  • Zhi-Xin Lyu
  • Qiang Shao
  • Yi Qin Gao
  • Xin Sheng Zhao
چکیده

The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs) in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom "tentacle" domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually "climb" into the Skp cavity in the absence of an external energy supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins.

Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent ch...

متن کامل

The early interaction of the outer membrane protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane.

Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein wa...

متن کامل

The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains.

Outer membrane proteins (OMPs) of gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded beta-barrel domain and a periplasmic alphabeta domain. Structurally, Skp belongs...

متن کامل

Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli.

Integral beta-barrel proteins (OMPs) are a major class of outer membrane proteins in Gram-negative bacteria. In Escherichia coli, these proteins are synthesized in the cytoplasm, translocated across the inner membrane via the Sec machinery, and assembled in the outer membrane through an unknown mechanism that requires the outer membrane YaeT complex and the periplasmic chaperones SurA, DegP, an...

متن کامل

The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential.

The basic biochemical and biophysical principles by which chaperone-bound membrane proteins are targeted to the outer membrane of Gram-negative bacteria for insertion and folding are unknown. Here we compare spontaneous folding of outer membrane protein A (OmpA) of Escherichia coli from its urea-unfolded form and from the complex with its periplasmic chaperone Skp into lipid bilayers. Skp facil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012